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Function space integration for the evaluation of the statistical 
sum of coupled anharmonic oscillators 

G. J. PAPADOPOULOS 
Department of Applied Mathematics, University of Leeds 
MS. received 7th August 1968, in final form 12th November 1968 

Abstract. The functional integral representation of the Green function of Bloch’s 
equation is employed for the derivation of a generating functional, used to obtain an 
expansion of the statistical sum of coupled anharmonic oscillators. The analysis 
basically involves averaging of functional polynomials against an appropriate Gaussian 
measure. Specific applications of the final results are not treated. 

1. Introduction 
The potential energy encountered in lattice vibrations for a system of N particles 

(usually nearest neighbours) consists of an harmonic part and anharmonic terms. Simul- 
taneous diagonalization of the kinetic energy of the system and the harmonic part of the 
potential energy, via an appropriate congruent transformation (see e.g. Goldstein 1953), 
leads to the following Lagrangian for the system : 

J 

where 
3 N 

4) = 2 ( e ; t i t j t k  + V14kitjtktl+ . . .) (l.la) 

g is a 3N-dimensional vector with components f t .  ul(Q is the anharmonic part of the poten- 
tial energy. We shall restrict the discussion to the case when all hj2 are positive. This 
implies that in the absence of anharmonicities the motion is strictly vibrational. 

For the statistical study of the thermodynamic properties of an assembly of independent 
systems, each with Hamiltonian H,  it is of great importance to know the statistical sum 
(Boltzmann quantum partition function), 

1 

of the system. The  summation in (1.2) is taken over all states of the system. En are the 
quantum eigenvalues of the Hamiltonian operator of the system. 

From (1.1) we obtain for the Hamiltonian operator 

It is well known that one may obtain the partition function 2 of the system from the 
Green function 

G(5’PIE”O) = 2 @n(5’>@),*(t”) exp( -PEn> (1.4) 
{ 

of the Bloch equation 

by setting E‘‘ = 5’ and subsequently integrating with respect to cf over all gf space. 
172 
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The  Green function of Bloch’s equation takes the form of a conditional path integral 
(see e.g. Yaglom 1956). In the case of our Hamiltonian given in (1.3), we have 

f l 1 7  - 3 N / 2  

G(F’Bl5’’o) = ( 17 2Vfi2 ds) f exp 1- - 0  f {~5(s)s(s)+:~(s)A25(s)) ds] 
O $ S < f l  

5 ( 0 ) = 5 ’  
B(B) = 5‘ 

x exp ( -  j” .l(&>> ds)  TJ d5(s)* ( 1 4 
0 o < s < f l  

f stands for the transpose of E, dg(s) for d&(s) dg2(s) .,. d?&(S) and t ( s )  for dc(s)/ds. 

the end-point condition in the functional integral will be taken from now on as 
Since we are not interested in the Green function as such, but in the form G(E’P1E’O), 

5(0) = 5(B) = 5’. (1.7) 
Thus, we shall be considering paths g(s) starting from 5’ at infinite temperature (s = 0) 
and terminating at the same point 5’ at temperature T = l/@. More explicitly the partition 
function is expressed as 

Z(P> = j W’Pl5’0) d5’. (1 4 

In 5 2 we develop an expansion of Z with the harmonic as leading term. The subse- 
quent terms are built up from the anharmonicity coefficients and averages of functional 
polynomials taken against a measure entirely dependent on the harmonic part of the 
Hamiltonian. Section 3 is devoted to the evaluation of a generating functional via which the 
functional averaging is effected. Lastly 4 4 deals with an explicit evaluation of the first few 
correction terms, satisfactory for small anharmonicities. 

The  expansion method is independent of the size of the anharmonic coefficients, but 
the practical usefulness will depend greatly on them. 

2. Expansion procedure 
We begin by expanding the expontial functional involving vl, in (1.6) as follows: 

(2.1) 

The series (2.1) is convergent irrespectively of the sizes of the coefficients of anharmonicity 
Vn). However for small Vn) it will be sufficient to restrict the expansion to their lower 
powers. 

Inserting (1.6) for the Green function into the expression (1.8) for the partition function 
and utilizing the expansion (2.1), we find that the partition function Z(P) is expressed as a 
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linear combination of functional polynomial averages of the following typical form : 
. .  

1;; ? , .  p1:i2...L = p5. I 9 0 " [ 5 0 1 ( 1 ' :  *J" 0 *'*&&I) 

U O )  = 5ta, = 5' 

where we have adopted the notation: 

which represents the basic measure for our averaging processes. This measure, besides the 
usual 'kinetic energy term' in the exponent, also involves the harmonic part of the potential 
energy. In  the language of matrix element perturbation theory, this would mean that the 
complete set of functions is the set of all functions corresponding to the harmonic part of 
the Hamiltonian (1 -3). Thus, the convergence behaviour of the present method is expected 
to be that of the above matrix element perturbation approach. 

An important property of the symbols 1::). defined in (2.2) is that any permutation of a 
set of indices of the same sublabel 0: (indicating a particular variable s, of integration from 
0 to ,B) leaves the symbol invariant. More explicitly if P, denotes a permutation operator 
on the set of indices with label x ,  we have 

This is easily established from (2.2). 
Furthermore, from the Gaussian character of the measure it f o l l o ~ s  that any symbol 

I!:), with an odd number of indices is zero. Also, among the 15). xith an even number of 
indices, there are zero elements. The rules for picking out the non-zero 1::). with an even 
number of indices will become clear when we arrive at the evaluation of these symbols via 
a generating functional. 

Combining (1.6), (l.S), (2.1) and (2.2) we express the partition function in terms of 
symbols I(,'!), as follows : 

where 

and 2, is the partition function of the system in the absence of anharmonicities. For the 
derivation of (2.5) we have taken into account that the IF). with an odd number of indices 
are zero. 

The  functional averages (2.2) are most easily obtained via integro-differential operations 
on the following generating functional : 
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J(s) is a 3N-dimensional vector function. In  fact (2.2) can be written as 

175 

~~ln:..Pl:*~**.r* = ?’ dg’ j 9 0 4 [ 5 ( s ) ]  ... ds, ds, ... ds, 
0 0 

It is possible to perform the functional integrations over all g(s) first and subsequently 
the various functional differentiations, followed by the corresponding integrations over sj. 
The details for a similar case may be found in Tarski (1967). Therefore (2.7) can be written 
in terms of the generating functional (2.6) as 

The vector function J(s) is a temperature prescribed acceleration. It may be imagined 
to be responsible for the various phonon-phonon interactions. However, its role in the 
present work is to facilitate the averaging processes. 

3. The generating functional 
To evaluate the generating functional, let us first find the functional integral on the 

right of the operator J dt’, in (2.6). Using (2.3) for the measure LI?~~[~(S)],  this integral 
can be written 

I 

T o  evaluate the path integral (3.1), it is convenient to employ the transformation 
(Feynman and Hibbs 1965) 

5(s) = X ( s )  +Y(S) (3.2) 

where X(s) is the path which minimizes the integral in the exponential argument of (3.1): 

and satisfies the conditions 
X(0)  = X(B) = g’.  

(3.3) 

(3.4) 

The  minimizing path satisfies the variational equation 

6AO4[E(41 = 0 (3 5 )  

(3 4 
with fixed g(s) at s = 0 and s = j?. The Euler-Lagrange equations, derived from (3.5) 
are e(,) - A2R2E(~) = - fi2J(s). 
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The solution of (3.6), which satisfies the conditions (3.4) can be easily verified to be 

X(s)  = {cosh(Ms) - tanh(&Ah/3) sinh(AHs)}g’ 
4 

+ fiA-1{sinh(Afi/3)}-1 I sinh{ilh(P-s’)} sinh(Rhs)J(s’) ds’ 
0 

- HA-l sinh(Ah(s-s’))J(s’) ds’. (3.7) 1: 
Introducing the transformation (3:2) into (3.3) we have 

In (3.8), the first-order term in y(s) vanishes, since this is the first variation of the 
functional A, which has been taken to be zero in (3.5). Straightforward evaluation of 
AO4[X(s)] is very laborious. However, integration by parts of the kinetic energy term, 
and utilization of the equation (3.6) for the minimizing path yields 

1 4 
AoBIX(s)] = 5 [2(/3)X(P) - x(O)X(O)] -+ 1 x ( s ) J ( s )  ds. 

0 
(3.9) 

Using (3.7) for the minimizing path and recalling (3.4), we write (3.9) as 

1- 
h 

- e ’ r{ cos h( A Hs ’ ) - t a nh( &M/3) s in h( A Hs ’ )}J( s ‘ ) ds ’ 

Ao4[X(s)] = - g ’ A  tanh($M/3)E’ 

0 

- ,d s” ~(s)*-l[jsinh(Rh/3)}-l sinh{AH(/?-s’>} sinh(RHs) 
0 

+ O(s - s’) sinh{Ah(s - s’)}]J(s’) ds ds’ (3.10) 

where in (3.10) we have introduced the step function 0 to extend the range of integration 
from 0 to p, in the last integral of (3.7). With the aid of transformation (3.2), relation (3.8) 
and the measure (2.3), (3.1) is written as 

C(E’Pi5’0; O W ) l )  = e x ~ { - A ~ ~ [ X ( s ) l }  (3.11) 
Y ( 0 )  = y m  = 0 

The evaluation of the functional integral on the right-hand side of (3.11) is: 

J L?BOB[y(s)] = [det(2nHA-l ~inh(AH/?)}]~’~, (3.1 la) 
y(0)  = y ( B )  = 0 

The details for the evaluation of (3.11a), appear, for example, in the treatment of a more 
general case of this type (Papadopoulos 1968). For the evaluation of the generating 
functional, we also need the result 

- 20(s - s’) sinh(M(s -s’)}]J(s’) ds ds’. (3.12) 
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For the derivation of (3.12) we have used (3.10) and taken into account the positive 
definiteness of the matrix 11. 

Combining (2.6), (3.1), (3.1 1 )  and (3.12), the following result for the generating functional 
is obtained: 

a a -  
ZZoo[J(s)] = [det(2 ~ i n h ( i h f i ~ ) } ] - ~  exp (1, 1 J(s)K(s, s’)J(s’) ds ds’) (3.13a) 

0 

where K is a 3 N  x 3 N  diagonal matrix given by 

K(s, s’) = fiA-’[g coth(&hfi/3) cosh{ilfi(s-s‘)}-i@(s-s’) sinh{iM(s-s’)}]. (3.13b) 

Putting J = 0 in (3.13a), it is easily verified, using (2.5a), that the factor in front of the 
exponential functional of J(s),  is the partition function 2, corresponding to the harmonic 
part of the potential energy. Thus 

3 N - 3 N  

2, = [ n{2 sinh(&hjfi/3)}] 
j = l  

( 3 . 1 3 ~ )  

(see e.g. Feynman and Hibbs (1965)). 

4. Evaluation via the generating functional 
We are now in a position, employing the generating functional, to obtain the quantities 

I!:),, required to evaluate the expansion (2.5) of the statistical sum. I t  is convenient to use 
an expanded form for the generating functional (3.13): 

1 1 1 
ZZ”o[J(S)] = 2, l + - ( J K J ) + - ( J I K ) 2 +  ... [ l! 2! 

where we have let 
p 8 ,  

(JKJ)  = [ / J(s)K(s, s’)J(s’) ds ds‘. 

(4 . la )  

(4 . lb)  
J O J O  

To evaluate the various I!:),, me shall employ (2.8) and (4.1). It is easy to re-establish that 
every I(.:). with an odd number of indices is zero. T o  find the expression for an 1::). with an 
even number of indices, say Zm, one need not operate on the entire generating functional 
as indicated in (2.8), but just on the mth expansion term: 

of (4.1). This is so, since terms of order less than m contain less than 2m J components 
and, therefore, when acted upon by 2m J functional differentiations will yield zero. Also, 
the result for terms of order higher than m will become zero, upon evaluation at J = 0. 

We turn now to the explicit evaluation of the averages I& and Ii:]lkl;f2j2k2. The  
first is associated with the first-order correction due to an anharmonic term of the form 
V4)(((, whereas the second relates to the second-order correction due to a term of the 
form V(3)&$. 

Employing (2.8) in the case of Ij4bl together with (4.lb),  we have 

6 4  1 
I? )  = - ZO(fKJ)2 

0 sJ,(s)6J,(s)6J,(s)6Jl(s) 2! 15kl 

A 2  
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If we introduce Ct(sl, s2) via 

K j ( s l ,  s2)+Kj i ( s2 ,  $1) = aijCt(s1, $2) (4.3a) 

Ci is symmetric with respect to s,, s2. Utilizing (3 .13b)  for the diagonal matrix K we find 

Ci(s1, ~ 2 )  = ~&h,- l [co th(&R,&~)  cosh{Ai&(s1 - s Z ) }  

+ {O(s, - s,) - O(s, - s2)} sinh{il,h(s, - s2)}]. (4.3b) 

Inserting (4.3a) into (4.2) we have 

The  integrations in (4.4a) are very simple, since Ci(s, s) is constant. We have 

1: dsC,(s, s)Cj(s, S) = ,B{@A,-l coth(&A,&/?)}(&L4j-1 coth(&A,Ap)}. (4.4b) 

The form of (4.4a), shows that I$ki is zero unless the indices ijkl can be grouped into 
pairs of equal indices. Thus, the non-zero components are 

(4 .44  

(4.5a) 

The functional differentiations in (4.5a), though somewhat laborious, are but a matter of 
routine exercise. The  various terms resulting from the functional differentiations may be 
obtained from the term 

(Kiltz(sl, s2) + Kiz i l (S2?  S1)}{Kfl .?z(S1,  s2) + K j a j l ( S Z ,  s l>){Kk lkg ( s l ,  sZ) + Kkakl(SZ, $1)) (4*5h)  

by allocating the indices il,jl, k,, i2,  k 2 , j 2 ,  in all possible ways into the three curly brackets 
(putting two indices per curly bracket) and at the same time rearranging the continuous 
variables s,, s2, so that in each K their labels follow the order of the labels of the discrete 
indices. A diagrammatic technique for obtaining these terms in the form of ladders can be 
easily developed. The  result for (4.5a) in terms of integrals of the quantities Cf(sl, s2) 
defined in (4.3b) is 
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where we have let 

B B  

c15; = jo j* dsl ds2Ci(sl, s2)c1(sl, s2)ck(s1, $2). (4.5d) 

The  first integral of (4.5d), using (4.3b), is easily evaluated if we take into account that 
C,(s, s) is constant. We have: 

Cs:; = {+Al-lti coth(~A,ti,9)}{Aj-2/3 + 2Aj-3ti-1 coth(&tiP)} 
X {$hk-'ti COth(&hkfij8)}. (4.5e) 

The  evaluation of the second integral is more laborious. If we define: 

Aijk = {(A,+Aj+Ak)ti)-2sinh2{+(A,+Aj+R,)fi~} = A(At,Aj, A,) 
A t - j k  = A(At, -Aj, A,) etc. 

B t j k  = ${(A, + A j  +Ak)h}-lP -+{(A, 4- Aj -I- A,)fi)-2 sinh{(ii, + Aj + hk)tiP} 
= B(Ai, 

B - i j k  = B( -A,, h j ,  A,) etCS (4.5.f) 
then the second integral of (4.54 can be expressed as 

Thus, the six-indexed twofold integration symbol I f l j l k l ;  t 2  ja k a  is decomposed into exterior 
products of Kronecker 6's and the three-indexed quantities Cjjk, C,131 given in (4*5e, g). 
The analysis for the higher-indexed I::)., involving higher multiplicity of s integrations is 
similar, but more involved. We may remark again that the six-indexed average in (4.5~) is 
zero unless the six indices i l , j l ,  kl, i 2 , j 2  and k2 can be grouped into three pairs with equal 
indices in each pair. 

As a simple application of the two averages that we have just found, let us write down the 
result for the partition function to first-order correction in V4) and second-order correction 
in V3),  in the case of the following potential energy: 

z" = 1 3 2 At2ti2 f 2 VtyLtitjtk f 2 v,:",'lttfjtktl* (4.6) 
When the anharmonic coefficients V ( 3 )  and V(*) are small, the following result is sufficient 
for the required partition function: 

As is well known, the two corrections in (4 .6~)  are of the same order, in temperature, as 
ti - to .  

By enlarging the store of the averages IF),, one may investigate the phonon-phonon 
interactions in the case of large anharmonicities, since the preceding expansion is independ- 
ent of the size of the anharmonicities. 
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5. Conclusion 
The present method circumvents possible degeneracy complications and also difficulties 

that would arise for high quantum numbers in a matrix element perturbation approach. 
Also the evaluation of highly involved series for the case of such perturbation potential 
energy as e1 (l.la), which would render the task of finding the partition function rather 
desperate, is evaded. The  present method is systematic and reduces the problem of 
finding the final results to a matter of routine exercise. We think that the functional 
approach to the evaluation of the partition function of anharmonic oscillators prevails in 
elegance and efficiency over the ordinary perturbation method. 

Acknowledgments 
The author would like to thank Professor S. F. Edwards for a beneficial discussion, 

References 
FEYNMAN, R. P., and HIBBS, A. R., 1965, Quantum Mechanics and Path Integrals (New York: RiIcGraw- 

GOLDSTEIN, H., 1953, Classical Mechanics (Cambridge Mass. : Addison-Wesley), p. 331, 
PAPADOPOULOS, G. J., 1968, J .  Phys. A, (Proc. Phys. Soc.), [2], 1,431-46. 
TARSKI, I., 1967, Lectures in Theoretical Physics (Boulder: University of Colorado Press). 
YAGLOM, A. M., 1956, Theory of Probability and Applications, Vol. 1 (English translation from 

Russian), (Philadelphia, Pennsylvania : Society for Industrial and Applied WIathematics), 
p. 145. 

Hill) pp. 58-61, 294. 


